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Fuzzy affinity hydration model
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Abstract. Time-dependent hydration process of Portland cement presents a complex system with several uncertainties. A presented
four-parametric affinity hydration model captures well the hydration kinetics when three parameters are treated as fuzzy numbers.
The equations for the fuzzy affinity hydration model are derived using Zadeh’s extension principle, which allows for simplifying
calculations to obtain a fuzzy solution. The fuzzy model validates Portland cements with different mineral compositions, water-
cement ratii raging from 0.16 to 0.50, and curing temperatures varying from 10 to 30◦C. Also, the fuzzy model is verified against
CEMHYD3D and s-shape hydration model. In summary, validation and verification results show that the fuzzy model permits to
predict vague conditions without lacking the credibility of results.

Keywords: affinity hydration model, cement hydration, extension principle, fuzzy numbers, modeling

1. Introduction

Hydration kinetics of Ordinary Portland Cement
(OPC) is of paramount importance since it determines
strength evolution, creep rate, permeability, or heat
release during concrete hardening. The complexity of
cement hydration occurs primarily due to an influence
of four mineral clinker phases, impurities, and their
interactions [33]. The degree of hydration (DoH), which
is defined as the total weight fraction of reacted Portland
cement, quantifies the hydration extent.

Several experimental methods, e.g. calorimetry,
non-evaporable water content, SEM image analysis,
chemical shrinkage, and X-ray diffraction analysis
(QXDA), have been proposed and applied to determine
the degree of hydration [29, 33]. A comprehensive list
of experimental methods is summarized in [35].

Experimental investigations serve as basis for val-
idating deterministic prediction models of cement
hydration, which are extensively used due to their
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practicality. Examples of well-known deterministic
hydration models include the CEMHYD3D model
based on cellular automata [3], the model based on
the theory of reactive porous media [9], the general
hydration model equation (s-shape model) introduced
in [32], and the affinity hydration model [6]. For addi-
tional examples and comparisons of hydration models
refer to [41]. Particular attention has been given to the
affinity hydration model in recent applications [11, 21]
due to its relatively low number of input parameters
and robustness when simulating hydration kinetics of
modern cements (i.e. blended cements), which contain
at least one supplementary material, e.g. blast-furnance
slag, and one chemical admixture [1].

The objective of this paper is extending
microstructure-property link to a broad range of
OPCs. This means relating model parameters (chemi-
cal composition, temperature, w/c ratio) of evolving
microstructures to the evolution of hydration degrees.
In the view of multiscale simulations, the hydration
model evaluation in many integration points requires
a time-efficient approach, penalizing time-consuming
models such as CEMHYD3D. Concurrently, a hydra-
tion model needs to cover experimental data including
the variability in microstructures, which stems from
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cement production, experimental methods, and their
errors. As a consequence of these requirements, a
fuzzy version of the deterministic affinity hydration
model is introduced.

Experimental data on the evolution of cement hydra-
tion are seldom available due to time, equipment, and
budget constraints. Besides, engineers tend to bind to
cement designations specified in technical standards
rather than its true properties. These issues combined
favor microstructure-property models against purely
phenomenologically-based models.

This paper introduces fuzzy set theory to three
parameters of the affinity hydration model. The param-
eters are linked to cement mineral composition and
Blaine fineness while accounting for the variability of
cement properties. In addition, a fuzzy version of the
affinity hydration model is derived based on Zadeh’s
extension principle [46]. The presented model as well
as its microstructure-link are validated for OPC pastes
with water-cement ratio ranging from 0.16 to 0.50, cur-
ing temperatures ranging from 10 to 30◦C, and five
mineral compositions. Also, the fuzzy model is verified
against CEMHYD3D [3] and s-shape hydration model
[32].

2. Affinity hydration model

The affinity hydration model provides a framework
for accommodating all stages of cement hydration
under isothermal temperature at 25◦C. The rate of
hydration dDoH

dt
can be expressed by

dDoH

dt
= Ā25(DoH), (1)

where Ā25(DoH) corresponds to the chemical affinity,
which has a dimension of time–1.

The affinity for isothermal temperature can be
obtained experimentally; specifically, the isothermal
calorimetry measures a heat flow q(t), which gives the
hydration heat Q(t) after integration. Cervera et al. [6]
proposed an analytical form of the normalized affinity,
which was further refined by Gawin et al. [19]. In this
work, a slightly modified formulation, proposed in [21],
is taken into account

Ā25(DoH) = β1

(
β2

DoH∞ + DoH
)
·

·(DoH∞ − DoH) · exp
(
−η DoH

DoH∞

)
,

(2)

Table 1
Parameters for the affinity hydration model (DoH∞ = 0.85)

Cement β1, [h−1] β2, [-] η, [-]

CEM I 32.5R Mitani(1) 0.5846 1.4e-3 7.0
CEM I 42.5R Mokra(1) 1.2667 8.0e-6 7.4
CEM I 42.5R Prachovice(2) 0.9744 7.0e-4 6.7
CEM I 52.5R Princigallo(2) 1.3641 6.0e-5 5.8
CEM II/A-S 42.5 Mokra(1) 0.9744 7.0e-4 6.7
CEM II/B-S 32.5R Mokra(1) 0.9744 7.0e-4 6.7
CEM III/B 32.5 Mokra(1) 0.5846 5.0e-3 8.0
(1)isothermal calorimetry and (2)CEMHYD3D model.

where β1 and β2 are parameters to be adjusted, η

presents the micro-diffusion of free water through
formed hydrates, and DoH∞ is the ultimate degree of
hydration. These parameters express isothermal hydra-
tion at 25◦C. When hydration proceeds under varying
temperature T , Ā25 can be scaled via Arrhenius equa-
tion

ĀT = Ā25 · exp

[
Ea

R
·
( 1

298.15
− 1

T

)]
, (3)

where R [Jmol−1K−1] is the universal gas constant and
Ea [Jmol−1] is the activation energy. The evolution of
DoH is obtained through numerical integration since
there is no analytical exact solution.

The affinity hydration model performs well on OPC
and blended cements. The validation of the affinity
hydration model against isothermal calorimetry data or
CEMHYD3D [3] simulation is depicted in Fig. 1, cap-
turing water/binder ratii in the range from 0.40 to 0.50.
The parameters considered in the simulations are listed
in Table 1. The cement designation used in Table 1 is in
accordance with the European standard EN 197-1 [17].
In all cases, DoH∞ was set at 0.85 and the results were
scaled to isothermal temperature 25◦C by recalculat-
ing them with Ea = 38.3 kJmol−1. Further applications
of the affinity hydration model are available elsewhere
[11, 21, 39]. Also, an open-source cross-platform desk-
top application, namely CEMHapp©, that uses the
affinity hydration model to predict the degree of hydra-
tion may be freely downloaded and used [14].

The results from the affinity model, CEMHYD3D,
the s-shape hydration model described in Equation (4)
[32], and isothermal calorimetry for CEM I 42.5R
Mokra are compared in Fig. 2. The experimental mea-
surements and CEMHYD3D model’s parameters were
collected from [10, 21]; whereas the parameters of the
s-shape curve were calibrated to obtain the most reason-
able predictions at early and later stages. In all cases,
DoH∞ was set at 0.85.
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Fig. 1. Validation of affinity hydration model on various cement
types, water/binder ratii from 0.40 to 0.50.

Fig. 2. Comparison of the affinity hydration model, CEMHYD3D
[3], the s-shape model (Equation (4)) [32], and isothermal measure-
ments of CEM I 42.5R Mokra, at w/c = 0.50 [10, 21].

DoH(t) = DoH∞ · exp

(
−

[
τ

t

]β)
, (4)

where τ and β are the hydration time [h] and shape
parameter [−], respectively. For more details on the
hydration model from Equation (4) refer to [32].

Figures 1 and 2 prove successful the deterministic
version of the affinity hydration model against differ-
ent modeling techniques and experimental results. The
advantage of the affinity hydration model relies on the
fact that only few parameters have to be calibrated to
predict cement hydration kinetics. Despite Equation (4)
having less parameters and performing reasonably well
on non-blended cements [32], prediction mismatches

are likely observed at either early (t = 1 to 3 days) or
later stages (t > 14 days) when simulating the kinetics
of blended cements. Notice that, at present, blended
cements represent the greatest share of commercial-
ized cement and tend to contain less and less clinker
[1]. Furthermore, proper DoH predictions at early and
later stages are important when simulating concrete
temperature and strength development.

The adequate performance of the affinity hydration
model does not change the fact that its parameters (β1,
β2, η, and DoH∞) have to be determined based on
expertise and/or experimental measurements followed
by curve fitting methods, e.g. least-square method
(LSM). To overcome the phenomenological character-
istic of the affinity model, a microstructure-property
link should be established, i.e. the model’s parameters
should be linked to cement properties.

Notice, however, that the production of cement is
prone to variability, such that even cement batches from
a common plant present slightly different compositions,
within the range of values specified in technical stan-
dards, e.g. [2, 17]. For example, the clinker composition
of Portland-slag cement (CEM II/A-S) must be within
80 to 94% [17]. Therefore, the link between affinity
model’s parameters and cement properties also carries
a certain degree of vagueness despite its effectiveness.

Once this link is established, the input parameters
of the affinity hydration model β1, β2, η, and DoH∞
become inherently uncertain and their representation by
fuzzy numbers is therefore reasonable. Consequently,
the final output as DoH also becomes a fuzzy number.
The fuzziness, i.e. uncertainty or vagueness, in the pre-
dicted degree of hydration is likely more pronounced
when a person without proper knowledge on cement
hydration kinetics determines the model’s parameters
or when cement properties remain unknown.

Prior to presenting the fuzzy version of the affin-
ity hydration model as well as its microstruture-link
and application, a brief review on fuzzy sets and fuzzy
numbers is introduced.

3. Fuzzy sets and fuzzy numbers

In 1965, Lotfi A. Zadeh developed the foundation
of fuzzy set theory based on the concept of vague-
ness, which was first envisioned by Max Black in
1937 [24, 42, 46]. According to Zadeh [46], fuzzy
sets are sets with boundaries that are not precise, i.e.
there is a smooth transition from membership to non-
membership, allowing for dealing with measurement
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uncertainties and vagueness without compromising the
reliability of the solution. Fuzzy set theory was applied
in many disciplines to resolve vagueness and uncertain-
ties, e.g. [12, 13, 28].

On fuzzy set theory, the degree of membership µ
B̃

(x)

of an element x in a fuzzy set B̃ consists of an unit inter-
val [0,1]. Thus, the classical set theory is verified when
µ

B̃
(x) = 1 or µ

B̃
(x) = 0. Besides, values of µ

B̃
(x)

within [0,1] are also accepted, allowing to describe any
element x that partially belongs to B̃. Hence, fuzzy sets
are considered as a generalization of classical sets. A
fuzzy set B̃ defined on the universe of discourse X can
be formally declared as

B̃ =
{

(x, µ
B̃

(x)) | x ∈ X
}

, (5)

If a fuzzy set is convex, normalized, and its mem-
bership function is defined on R1 and piecewise
continuous, then this set is called a fuzzy number [25]. A
fuzzy number is a fuzzy set with membership function
that is upper-semicontinuous and normalized [18, 34].
Generally, a fuzzy number is defined as a real number
whose boundary is fuzzy [25].

The membership function of a fuzzy set, or a fuzzy
number, can assume several shapes, which will depend
on the context of a particular application. Basically, the
shape of a fuzzy set can be purely designed depend-
ing on the developer’s expertise. According to Klir and
Yuan [24], many applications are not overly sensitive
to variations in the membership functions’ shape. Thus,
it is convenient to use simple shapes such as triangu-
lar shape; specifically, the membership function of a
triangular fuzzy number F̃ is declared as

µ
F̃

(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x < x1 ∨ x > x3,

x − x1

x2 − x1
, x1 ≤ x ≤ x2,

x3 − x

x3 − x2
, x2 < x ≤ x3.

(6)

where x1, x2, and x3 are the boundaries of the fuzzy
number, see Fig. 3. Alternatively, a triangular fuzzy
number F̃ can be described as F̃ (x1, x2, x3; h), where
h corresponds to the height of the fuzzy set.

Given a fuzzy set B̃ defined on X and any number α

within the unit interval [0,1], the α-cut of B̃ reads

B̃α =
{

x

∣∣∣ µ
B̃

(x) ≥ α, x ∈ X
}

. (7)

The α-cut corresponds to a crisp interval (set) deter-
mined from the fuzzy set according to a selected
membership function value, i.e. µ

B̃
(x) = α. Basically,

Fig. 3. Triangular fuzzy number F̃ (x1, x2, x3; h), with h = 1.

any fuzzy set can be derived from a significant num-
ber of α-cut sets. The α-cut (F̃α) of a triangular fuzzy
number F̃ (x1, x2, x3; 1) can be declared as

F̃α = [FL
α , FR

α ], (8)

where FL
α and FR

α are the left and right boundaries of
the α-cut, respectively. FL

α and FR
α are computed by

FL
α = x1 + (x2 − x1) · α (9)

and

FR
α = x3 − (x3 − x2) · α, (10)

respectively. The α-cut F̃0.50 as well as its boundaries
(FL

0.50 and FR
0.50) are depicted in Fig. 3. As further

discussed in Section 4, the combination of the α-cut rep-
resentation and Zadeh’s extension principle shown in
Equations (8) and (19), respectively, helps simplifying
calculations of the output from fuzzy functions.

Finally, the measure of fuzziness of a fuzzy set is
introduced. A measure of fuzziness estimates the ambi-
guity present in a fuzzy set [44]. Although several
methods have been introduced, e.g. [7, 8, 22, 43, 47],
the measure of fuzziness based on Hamming distance,
which is defined by the sum of absolute values of
difference, is commonly used because it is simple
and intuitively easy to comprehend [24]. Considering
a triangular fuzzy number F̃ (x1, x2, x3; 1), the corre-
sponding measure of fuzziness m(F̃ ) is computed by

m(F̃ ) = x3 − x1 −
∫ x3

x1

|2µ
F̃

(x) − 1|dx, (11)
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and the degree of fuzziness γ(F̃ ) is given by a percent-
age of the central value, i.e.

γ(F̃ ) = m(F̃ )

x2
. (12)

4. Fuzzy affinity hydration model

4.1. Vagueness in estimating parameters

The fuzziness of the input parameters β1, β2, η, and
DoH∞ will influence the fuzziness of the output DoH .
In order to simplify calculations without compromising
the reliability of results, it is important to investigate
which of these parameters are uncertain.

The parameters β1, β2, and η can be estimated based
on cement Blaine fineness and mineral composition,
which have considerable influence on hydration kinet-
ics [27, 37]. For example, ranges of Blaine fineness
and mineral composition of two type I Portland cement
are summarized in Table 2, these values were col-
lected from [30]. The data prove that nominally similar
cements differ in fineness and mineral composition with
an impact on hydration kinetics.

For the above-mentioned reasons, β1, β2, and η are
assumed as fuzzy numbers. The boundaries of β̃1, β̃2,
and η̃, which are assumed to be triangular fuzzy num-
bers, must be determined by an expert based on an
investigation of cement composition variability and/or
experimental measurements.

The intermediary values of β̃1, β̃2, and η̃ shown in
Table 2 were computed from the average mineral com-
positions, based on [27] for atmospheric pressure

β1 = 0.738 · C3S
−0.206 · C2S

−0.128 · C3A
0.161, (13)

β2 = (−0.0767 · C4AF + 0.0184) · Bf

β1 · 350
, (14)

η = 10.95C3S+11.25C2S−4.10C3A − 0.892 (15)

where Bf is the Blaine fineness of cement in m2/kg and
C3S, C2S, C3A, and C4AF are the mass percentages of
each mineral. The degree of fuzziness γ(β̃1), γ(β̃2), and
γ(η̃) come from Equation (11). Equations (13)–(15)
were converted from Lin and Meyer [27] since the
model proceeds at 25◦C instead of 20◦C. For such
particular case, a multiplication factor of 1.32 for
Ea = 40.0 kJ mol−1 was used, according to Equa-
tion (3).

Table 2
Portland cement properties obtained from [30] and estimated β̃1, β̃2,

and η̃

CEM I 42.5 R CEM I 52.5 R

C3S, [%] 51.0 – 67.5 54.5 – 67.5
C2S, [%] 7.0 – 22.0 7.0 – 19.2
C3A, [%] 6.0 – 9.0 6.0 – 14.1
C4AF, [%] 10.0 – 10.0 4.4 – 10.0
Blaine, [m2/kg] 335 – 450 440 – 500
β̃1, [h−1] (0.69, 0.73, 0.80; 1) (0,75, 0,76, 0,78; 1)
β̃2, [–]×10−2 (1.31, 1.67, 2.04; 1) (2.04, 2.26, 2.41; 1)
η̃, [–] (5.2, 6.9, 8.6; 1) (5.6, 6.7, 8.1; 1)
γ (̃β1), [%] 7.6 1.8
γ (̃β2), [%] 21.7 8.0
γ (̃η), [%] 24.6 18.7

Regarding the ultimate degree of hydration (DoH∞),
the results indicate that DoH∞ is related only to the
water-cement ratio (w/c) [31]. The theoretical value of
DoH∞ is always limited to

w/c

0.40
≤ 1.0 (sealed condition) (16)

or

w/c

0.36
≤ 1.0 (saturated condition) (17)

due to unavailable capillary space for accommodating
hydration products [20]. Recent publications [21, 27],
on the other hand, show that DoH∞ also depends on
the cement Blaine fineness. For simplicity, DoH∞ is
assumed as a crisp number (fixed parameter) within
the range of 0.80 to 1.00 and limited to the theoretical
values mentioned above.

4.2. Proposed fuzzy affinity hydration model

Assuming that the vagueness stems from estimating
β1, β2, and η, and that DoH∞ is a crisp value, the fuzzy

rate of hydration d˜DoH
dt

can be written as

d ]DoH

dt
= β̃1

( β̃2

DoH∞
+ ]DoH

)
·

·(DoH∞ − ]DoH) · exp
(
−η̃

]DoH

DoH∞

)
.(18)

Several methods for solving fuzzy differential equa-
tions are discussed [5]. In this work, the solution of
Equation (18) will be based on Zadeh’s extension prin-
ciple [46], which states that the image of a fuzzy set Ã

under a crisp-mapping function f can be expressed as a
fuzzy set B̃. This principle can be seen as the extension
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132 W.R.L. da Silva and V. Šmilauer / Fuzzy affinity hydration model

of crisp functions to act on fuzzy sets. In particular, con-
sidering that f : X → Y and that Ã is a given fuzzy set
defined on X, then the fuzzy set B̃ defined on Y can be
computed by

µ
B̃

(y) = sup
x=f−1(y)

µ
Ã

(x) , ∀ y ∈ Y, (19)

where f−1 is the complete preimage (or inverse image)
of f . The identity shown in Equation (19) corre-
sponds to Zadeh’s extension principle. The "sup"
operator in Equation (19) is necessary to avoid the
ambiguity of results that occurs when f is a many-to-
one function, i.e. f (x1) = f (x2) = y, but x1 /= x2 and
µ

Ã
(x1) /= µ

Ã
(x2), for x1 and x2 ∈ X.

If f : X → Y is a continuous function, Ã is a fuzzy
set defined on X, such that its membership function is
upper-semicontinuous and Ãα is compact ∀ α ∈ (0, 1),
and B̃ is a fuzzy set defined on Y, such that B̃ = F (Ã),
then the relation F (Ã)α = f (Ãα) holds. Hence, the α-
cut of B̃ is coincident with the image of the Ãα obtained
by f, i.e. B̃α = f (Ãα).

The application of Zadeh’s extension principle
allows for using fuzzy numbers in crisp functions [23].
To simplify calculations, the α-cut of the fuzzy input
parameters can be used to determine the α-cut of the
fuzzy output; specifically, the α-cut ]DoHα for a given
time t reads

]DoHα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DoHL
α (t, β̃1, β̃2, η̃, DoH∞, α) =

= min{DoH(t, β1, β2, η, DoH∞, α) |
| β1 ∈ β̃1α, β2 ∈ β̃2α, η ∈ η̃α},

DoHR
α (t, β̃1, β̃2, η̃, DoH∞, α) =

= max{DoH(t, β1, β2, η, DoH∞, α) |
| β1 ∈ β̃1α, β2 ∈ β̃2α, η ∈ η̃α},

(20)

In case the monotonicity of the output function does
not hold, an optimization process is required to deter-
mine the output extremes of ]DoHα for a given α-cut.
Refer to [4, 36] for examples of application.

However, because DoH corresponds to a mono-
tonic function in the space of the input variables,
see Equation (2), the extreme values of ]DoHα, i.e.
[DoHL

α , DoHR
α ] can be calculated based on the extreme

values of the parameters’ intervals. This approach
further simplifies calculations when combined with
Zadeh’s extension principle since the need for optimiza-
tion to compute the fuzzy output is excluded.

This way, based on Equation (20) and considering the
fuzzy input parameters β̃1, β̃2, and η̃ as triangular fuzzy
numbers, see Equation (8), ]DoHα for a given time t is
computed by

]DoHα =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

DoHL
α (t, β̃1, β̃2, η̃, DoH∞, α) =

= DoH(t, β1
L, β2

L, ηR, DoH∞, α),

DoHR
α (t, β̃1, β̃2, η̃, DoH∞, α) =

= DoH(t, β1
R, β2

R, ηL, DoH∞, α).

(21)

Subsequently, ]DoHα is obtained by substituting
Equation (21) in Equation (18), i.e.

dDoHL
α

dt
= βL

1

(
βL

2

DoH∞
+ DoHL

α

)
·

·(DoH∞ − DoHL
α ) · exp

(
−ηR DoHL

α

DoH∞

)
(22)

and

dDoHR
α

dt
= βR

1

(
βR

2

DoH∞
+ DoHR

α

)
·

·(DoH∞ − DoHR
α ) · exp

(
−ηL DoHR

α

DoH∞

)
,

(23)

and integrating Equations (22) and (23) over time.
Finally, ]DoH is derived from a significant number of
α-cut for a given time t and its fuzziness is computed
by Equation (11).

An example of the output from the fuzzy affinity
hydration is depicted in Fig. 4(a). The fuzzy out-
put ]DoH was obtained based on the parameters from
Table 2 (DoH∞ = 0.85) and Equations (22) and (23),
which were integrated over time. The fuzzy degree of
hydration ]DoH for t = 1, 7, and 28 days is shown in
Fig. 4(b).

The complexity analysis of the proposed hydra-
tion model is determined from an asymptotic sense
considering the worst-case scenario; specifically, the O-
notation [45] is used as a reference since it indicates the
upper bound of the model’s asymptotic behavior. The
basic version of the affinity model, see Equation (2),
presents a linear behavior, i.e. O(n), as a result of the
time integration that is applied to compute DoH .

The fuzzy model, conversely, features an O(n4) com-
plexity at a particular time t. Such complexity yields
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Fig. 4. a) Fuzzy hydration for CEM I 42.5 R and b) the corresponding ˜DoH for t = 1, 7, and 28 days.

from the iteration process over α and the fuzzy param-
eters β̃1, β̃2, and η̃. After applying Zadeh’s extension
principle, the complexity of fuzzy model is reduced
to O(n) because the iteration over β̃1, β̃2, and η̃ is
excluded. Taking into account the time integration that
is used to compute DoH , the complexity of the fuzzy
model (Equations (18)–(20)) is then O(n5), whereas the
complexity of the fuzzy model with extension principle
(Equations (22)–(23)) is O(n2).

5. Application of the fuzzy affinity hydration
model

The fuzzy affinity hydration model described in Sec-
tion 4 was applied to predict OPC hydration. The
obtained results were validated against experimental
results available in the literature, specifically [15, 16,
26, 27, 38], and verified against CEMHYD3D [3] and
the s-shape model [32] (Equation (4)). The following
nomenclature was adopted:

A: cement pastes with the same type of cement and
w/c but different curing temperatures (Tc) [15,
16].

B: cement pastes with the same type of cement and
Tc but different w/c [27, 38].

C: cement pastes with the same w/c and Tc but differ-
ent cement compound composition [26, 27].

The cement mineral composition, Blaine fineness, cur-
ing temperature and w/c of the pastes are summarized
in Table 3.

The parameters adopted for the fuzzy affinity model
are listed in Table 4. Their values were estimated based
on the discussion presented in Section 4.1 and Table 2.
The degree of fuzziness γ(β̃1), γ(β̃2), and γ(η̃) were
set at 5%, 15%, and 20%, respectively. The Ea values
shown in Table 4 were collected from [15, 16, 26, 27,
38].

With regard to the verification of the fuzzy affinity
model against other prediction models, the parameters
from the s-shape model are listed in Table 5. Because
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Table 3
Cement composition and experimental conditions [15, 16, 26, 27, 38]

Series Tc w/c Mineral composition, [%] Blaine

[◦C] [-] C3S C2S C3A C4AF [m2/kg]

A1 10(4) 0.50 71.6 10.9 3.7 10.7 376
A2 20(4) 0.50 71.6 10.9 3.7 10.7 376
A3 30(4) 0.50 71.6 10.9 3.7 10.7 376
B1 25 0.16 41.4 34.0 9.8 7.5 368
B2 25 0.35 41.4 34.0 9.8 7.5 368
B3 25 0.50 41.4 34.0 9.8 7.5 368
C1 24 0.50 51.4 22.6 11.1 7.9 372
C2 24 0.50 41.6 34.4 5.4 13.2 314
C3 24 0.50 60.0 13.5 8.9 8.1 564
(4)Tc = 20◦C in the first 24 h [16].

the s-shape model does not present a microstructure-
property relation, the parameters β and τ had to be
determined by LSM in order to fit the predicted to the
available measured data. The DoH∞, on the other hand,
is equal to the ones used in the fuzzy model, see Table
4.

The cement properties shown in Table 3 were used
as input for CEMHYD3D. Moreover, the random seed,
representative volume element (RVE), induction time
(t0), and cycle-time mapping (βCEMHYD3D) were set
at 100, 50 µm, 0.0 h, and 3 × 10−4, respectively, in
all simulations. These values agree with the ones
implemented in [39]. The CEMHYD3D calculations
were performed using the CemPy application [40],
which was developed at the Czech Technical Univer-
sity in Prague and may be freely downloaded and
used.

5.1. Results and discussion

Figure 5 verifies the fuzzy affinity hydration model
against the s-shape model Equation (4) [32] and
CEMHYD3D [3]. Notice that, because the output from
CEMHYD3D and Equation (4) are crisp values, only
the most possible output from the fuzzy model, i.e.
]DoH1.00 is indicated in Fig. 5. The scatter plot of results
and corresponding coefficient of determination (r2) are
displayed in Fig. 7.

When analyzing the results from the evaluated mod-
els (Figures 5 and 7), it is important to bear in mind
that the s-shape model [32] enables proper DoH pre-
dictions because the model’s parameters (Table 5) were
fit based on experimental data. The same is not true for
CEMHYD3D and the fuzzy affinity model, which fea-
ture a microstructure-link. In spite of that, all models
models present a similar trend with regard to DoH for
the evaluated OPC.

Table 4
Estimated parameters of the fuzzy affinity hydration model

Series Estimated parameters

A A1 to A3 β̃1, [h−1] (0.5866, 0.6175, 0.6484; 1)
[15, 16] β̃2, [-] (0.0151, 0.0177, 0.0204; 1)

η̃, [-] (6.4153, 8.0192, 9.6230; 1)
DoH∞, [-] 0.95
Ea, [J/mol] 44166

B B1 to B3 β̃1, [h−1] (0.6641, 0.6991, 0.7340; 1)
[27, 38] β̃2, [-] (0.0162, 0.0190, 0.0219; 1)

η̃, [-] (5.6499, 7.0624, 8.4749; 1)
DoH∞, [-] 0.44, 0.80, and 0.90 (5)

Ea, [J/mol] 43000
C C1 β̃1, [h−1] (0.6828, 0.7187, 0.7547; 1)

[26, 27] β̃2, [-] (0.0155, 0.0182, 0.0210; 1)
η̃, [-] (5.4569, 6.8211, 8.1854; 1)
DoH∞, [-] 0.90
Ea, [J/mol] 45721

C2 β̃1, [h−1] (0.6018, 0.6335, 0.6652; 1)
[26, 27] β̃2, [-] (0.0100, 0.0117, 0.0135; 1)

η̃, [-] (5.8478, 7.3097, 8.7717; 1)
DoH∞, [-] 0.90
Ea, [J/mol] 41778

C3 β̃1, [h−1] (0.6818, 0.7177, 0.7536; 1)
[26, 27] β̃2, [-] (0.0233, 0.0274, 0.0315; 1)

η̃, [-] (5.4631, 6.8289, 8.1946; 1)
DoH∞, [-] 1.00
Ea, [J/mol] 49995

(5)B1, B2, and B3, respectively.

Table 5
DoH∞ and parameters determined by LSM for Equation (4) [32]

Series β, [-] τ, [h] DoH∞, [-]

A1 0.400 33.68 0.95
A2 0.428 23.86 0.95
A3 0.414 16.12 0.95
B1 0.432 10.59 0.44
B2 0.435 14.05 0.80
B3 0.470 18.13 0.90
C1 0.479 17.20 0.90
C1 0.451 23.06 0.90
C3 0.514 10.64 1.00



A
U

TH
O

R
 C

O
P

Y
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Fig. 5. Verification of fuzzy hydration against the hydration model from [32] and CEMHYD3D [3]: a) A1 to A3, b) B1 to B3, and c) C1 to C3.

The advantage of the fuzzy affinity hydration model
over the s-shape model stems from its microstructure-
property characteristic discussed throughout the paper.
When compared to CEMHYD3D, conversely, differ-
ent measures must be used since both the models have
a microstructure-property link. Considering that DoH

predictions are generally applied for estimating con-
crete’s thermal behavior and strength development, to
mention a few, and that such estimations depend on
the evaluation of hydration model in several integra-
tion points, it is evident that a time-efficient approach is
desired. Thus, the proposed model is advantageous over
CEMHYD3D with regards to the model’s complex-
ity; specifically, CEMHYD3D model has a cubic-time
behavior, i.e. O(n3), while the fuzzy model has a
quadratic-time behavior O(n2).

Regarding the validation of the proposed model,
Fig. 6 validates the simulation results for series

A, B, and C. Experimental data in Fig. 6(a)
agree well with the fuzzy affinity hydration model
for curing temperatures between 10 and 30◦C in
series A. In addition, it is clear that the degree
of fuzziness considered for the input parameters,
i.e. γ(β̃1), γ(β̃2), and γ(η̃), was properly estimated
since all experimental points belong to the interval
[DoHL

0.0, DoHR
0.0] at any given time. In fact, the esti-

mated degree of fuzziness could be further reduced
once that the experimental data stay within the interval
[DoHL

0.25, DoHR
0.25].

Series B from Fig. 6(b) validates well pastes with
w/c between 0.35 and 0.50 but not 0.16. For data
sets B2, B3, the values assigned to γ(β̃1), γ(β̃2), and
γ(η̃) could be reduced since the experimental results
tend to stay within the interval [DoHL

0.25, DoHR
0.25].

For B1, simulation results indicate that the fuzzi-
ness of the parameters should be increased in order
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Fig. 6. Validation of fuzzy hydration curves: a) A1 to A3, b) B1 to B3, and c) C1 to C3.

to encompass the experimental values in the interval
[DoHL

0.0, DoHR
0.0]. Notice, however, that B1 corre-

sponds to an extreme case of w/c; therefore, the
imprecise prediction is related to a limitation of the
affinity hydration model rather than the vagueness when
estimating parameters.

The affinity model performs well on cements with
different mineral composition in series C. Except for C2
and C3 at t = 0.15 and 0.35 days, respectively, the exper-
imental data lies within [DoHL

0.0, DoHR
0.0]. A closer

look at Fig. 6(c) indicates that, similarly to series A,
the degree of fuzziness of the input parameters could
be reduced for C1. Nevertheless, the same is not veri-
fied for C2 and C3, indicating that the variability in the
compound composition of C2 and C3 is likely greater
than in C1. Fig. 7. Scatter plot of measured versus predicted DoH.
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Fig. 8. Average degree of fuzziness in A, B, and C series.

The average γ( ]DoH) obtained in each of the inves-
tigated series is illustrated in Fig. 8. It is evident
that γ( ]DoH) tends to decrease with hydration time.
Such trend stems from the formulation of the affin-
ity hydration model since it converges to DoH∞. In
other words, as hydration proceeds to a known ultimate
degree of hydration, the uncertainty in DoH estimation
decreases.

Altogether, the results from Fig. 6 validate not only
the fuzzy affinity hydration model for OPC hydration
(Equation (18)) at various boundary conditions, but
also Equations (13)–(17) for an estimation of the input
parameters β1, β2, η, and DoH∞. Notice, however,
that complementary investigations are likely necessary
to verify whether the presented equations are robust
enough to predict reliably the parameters of the fuzzy
affinity hydration model for boundary conditions that
differ from the ones explored in this paper.

6. Conclusions

Fuzzy set theory was used to address uncertainties
when estimating affinity hydration model’s parameters.
Moreover, the extension principle was applied to derive
the equations of the fuzzy affinity hydration model and
compute the fuzzy solution in a simplified way. Dif-
ferent scenarios of hydrating Portland cement were
simulated and the fuzzy model was verified against
other models validated against experimental data.

The microstructure-property link presented in this
paper, see Equations (13)–(15), provides β1, β2, η

parameters directly from mineral composition and

Blaine fineness. The degree of fuzziness up to 20%
extends their ranges, obtaining vague but reliable solu-
tions regarding the degree of hydration. The fuzzy
affinity hydration model proved suitable for predicting
the degree of hydration of Ordinary Portland cement
pastes with water-cement ratii ranging from 0.16 to
0.50, curing temperature ranging from 10 to 30◦C, and
various mineral compositions and Blaine fineness.

The verification results highlight the advantages of
the fuzzy model with regard to its microstrucuture-
property link and its performance when applied in
complex tasks such as multiscale simulations. Hence,
the fuzzy affinity hydration model represents a highly
attractive prediction method for the cement and con-
crete industry since it includes only few parameters that
are linked to cement properties and allows for tackling
uncertainties in the parameter estimates while obtaining
realistic results.

Future research prospects include the validation of
the fuzzy affinity hydration model and the equations to
estimate its input parameters on blended cements, e.g.
slag and fly-ash cements, due to their high share in the
market.
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